MMD GAN: Towards Deeper Understanding of Moment Matching Network
نویسندگان
چکیده
Generative moment matching network (GMMN) is a deep generative model that differs from Generative Adversarial Network (GAN) by replacing the discriminator in GAN with a two-sample test based on kernel maximum mean discrepancy (MMD). Although some theoretical guarantees of MMD have been studied, the empirical performance of GMMN is still not as competitive as that of GAN on challenging and large benchmark datasets. The computational efficiency of GMMN is also less desirable in comparison with GAN, partially due to its requirement for a rather large batch size during the training. In this paper, we propose to improve both the model expressiveness of GMMN and its computational efficiency by introducing adversarial kernel learning techniques, as the replacement of a fixed Gaussian kernel in the original GMMN. The new approach combines the key ideas in both GMMN and GAN, hence we name it MMD GAN. The new distance measure in MMD GAN is a meaningful loss that enjoys the advantage of weak∗ topology and can be optimized via gradient descent with relatively small batch sizes. In our evaluation on multiple benchmark datasets, including MNIST, CIFAR-10, CelebA and LSUN, the performance of MMD GAN significantly outperforms GMMN, and is competitive with other representative GAN works.
منابع مشابه
Demystifying MMD GANs
We investigate the training and performance of generative adversarial networks using the Maximum Mean Discrepancy (MMD) as critic, termed MMD GANs. As our main theoretical contribution, we clarify the situation with bias in GAN loss functions raised by recent work: we show that gradient estimators used in the optimization process for both MMD GANs and Wasserstein GANs are unbiased, but learning...
متن کاملGenerative Adversarial Mapping Networks
Generative Adversarial Networks (GANs) have shown impressive performance in generating photo-realistic images. They fit generative models by minimizing certain distance measure between the real image distribution and the generated data distribution. Several distance measures have been used, such as Jensen-Shannon divergence, f -divergence, and Wasserstein distance, and choosing an appropriate d...
متن کاملConditional Generative Moment-Matching Networks
Maximum mean discrepancy (MMD) has been successfully applied to learn deep generative models for characterizing a joint distribution of variables via kernel mean embedding. In this paper, we present conditional generative moment-matching networks (CGMMN), which learn a conditional distribution given some input variables based on a conditional maximum mean discrepancy (CMMD) criterion. The learn...
متن کاملGenerative Moment Matching Networks
We consider the problem of learning deep generative models from data. We formulate a method that generates an independent sample via a single feedforward pass through a multilayer preceptron, as in the recently proposed generative adversarial networks (Goodfellow et al., 2014). Training a generative adversarial network, however, requires careful optimization of a difficult minimax program. Inst...
متن کاملSubmodular Mini-Batch Training in Generative Moment Matching Networks
Generative moment matching network (GMMN), which is based on the maximum mean discrepancy (MMD) measure, is a generative model for unsupervised learning, where the mini-batch stochastic gradient descent is applied for the update of parameters. In this work, instead of obtaining a mini-batch randomly, each mini-batch in the iterations is selected in a submodular way such that the most informativ...
متن کامل